3.9.12 \(\int \cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))^3 \, dx\) [812]

3.9.12.1 Optimal result
3.9.12.2 Mathematica [A] (verified)
3.9.12.3 Rubi [A] (verified)
3.9.12.4 Maple [B] (verified)
3.9.12.5 Fricas [C] (verification not implemented)
3.9.12.6 Sympy [F(-1)]
3.9.12.7 Maxima [F]
3.9.12.8 Giac [F]
3.9.12.9 Mupad [B] (verification not implemented)

3.9.12.1 Optimal result

Integrand size = 23, antiderivative size = 116 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))^3 \, dx=\frac {6 a \left (a^2+5 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 b \left (a^2+b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {8 a^2 b \sqrt {\cos (c+d x)} \sin (c+d x)}{5 d}+\frac {2 a^2 \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x)) \sin (c+d x)}{5 d} \]

output
6/5*a*(a^2+5*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Elliptic 
E(sin(1/2*d*x+1/2*c),2^(1/2))/d+2*b*(a^2+b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2) 
/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/5*a^2*cos(d* 
x+c)^(3/2)*(a+b*sec(d*x+c))*sin(d*x+c)/d+8/5*a^2*b*sin(d*x+c)*cos(d*x+c)^( 
1/2)/d
 
3.9.12.2 Mathematica [A] (verified)

Time = 1.23 (sec) , antiderivative size = 84, normalized size of antiderivative = 0.72 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))^3 \, dx=\frac {2 \left (3 \left (a^3+5 a b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+5 b \left (a^2+b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+a^2 \sqrt {\cos (c+d x)} (5 b+a \cos (c+d x)) \sin (c+d x)\right )}{5 d} \]

input
Integrate[Cos[c + d*x]^(5/2)*(a + b*Sec[c + d*x])^3,x]
 
output
(2*(3*(a^3 + 5*a*b^2)*EllipticE[(c + d*x)/2, 2] + 5*b*(a^2 + b^2)*Elliptic 
F[(c + d*x)/2, 2] + a^2*Sqrt[Cos[c + d*x]]*(5*b + a*Cos[c + d*x])*Sin[c + 
d*x]))/(5*d)
 
3.9.12.3 Rubi [A] (verified)

Time = 1.10 (sec) , antiderivative size = 178, normalized size of antiderivative = 1.53, number of steps used = 16, number of rules used = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.696, Rules used = {3042, 4752, 3042, 4328, 27, 3042, 4535, 3042, 4258, 3042, 3119, 4533, 3042, 4258, 3042, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))^3 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^3dx\)

\(\Big \downarrow \) 4752

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {(a+b \sec (c+d x))^3}{\sec ^{\frac {5}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^3}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx\)

\(\Big \downarrow \) 4328

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2}{5} \int \frac {12 b a^2+3 \left (a^2+5 b^2\right ) \sec (c+d x) a+b \left (a^2+5 b^2\right ) \sec ^2(c+d x)}{2 \sec ^{\frac {3}{2}}(c+d x)}dx+\frac {2 a^2 \sin (c+d x) (a+b \sec (c+d x))}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{5} \int \frac {12 b a^2+3 \left (a^2+5 b^2\right ) \sec (c+d x) a+b \left (a^2+5 b^2\right ) \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x)}dx+\frac {2 a^2 \sin (c+d x) (a+b \sec (c+d x))}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{5} \int \frac {12 b a^2+3 \left (a^2+5 b^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right ) a+b \left (a^2+5 b^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 a^2 \sin (c+d x) (a+b \sec (c+d x))}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 4535

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{5} \left (\int \frac {12 b a^2+b \left (a^2+5 b^2\right ) \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x)}dx+3 a \left (a^2+5 b^2\right ) \int \frac {1}{\sqrt {\sec (c+d x)}}dx\right )+\frac {2 a^2 \sin (c+d x) (a+b \sec (c+d x))}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{5} \left (3 a \left (a^2+5 b^2\right ) \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\int \frac {12 b a^2+b \left (a^2+5 b^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\right )+\frac {2 a^2 \sin (c+d x) (a+b \sec (c+d x))}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 4258

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{5} \left (\int \frac {12 b a^2+b \left (a^2+5 b^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+3 a \left (a^2+5 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx\right )+\frac {2 a^2 \sin (c+d x) (a+b \sec (c+d x))}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{5} \left (\int \frac {12 b a^2+b \left (a^2+5 b^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+3 a \left (a^2+5 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )+\frac {2 a^2 \sin (c+d x) (a+b \sec (c+d x))}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{5} \left (\int \frac {12 b a^2+b \left (a^2+5 b^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {6 a \left (a^2+5 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )+\frac {2 a^2 \sin (c+d x) (a+b \sec (c+d x))}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 4533

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{5} \left (5 b \left (a^2+b^2\right ) \int \sqrt {\sec (c+d x)}dx+\frac {6 a \left (a^2+5 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {8 a^2 b \sin (c+d x)}{d \sqrt {\sec (c+d x)}}\right )+\frac {2 a^2 \sin (c+d x) (a+b \sec (c+d x))}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{5} \left (5 b \left (a^2+b^2\right ) \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {6 a \left (a^2+5 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {8 a^2 b \sin (c+d x)}{d \sqrt {\sec (c+d x)}}\right )+\frac {2 a^2 \sin (c+d x) (a+b \sec (c+d x))}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 4258

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{5} \left (5 b \left (a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {6 a \left (a^2+5 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {8 a^2 b \sin (c+d x)}{d \sqrt {\sec (c+d x)}}\right )+\frac {2 a^2 \sin (c+d x) (a+b \sec (c+d x))}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{5} \left (5 b \left (a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {6 a \left (a^2+5 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {8 a^2 b \sin (c+d x)}{d \sqrt {\sec (c+d x)}}\right )+\frac {2 a^2 \sin (c+d x) (a+b \sec (c+d x))}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{5} \left (\frac {10 b \left (a^2+b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {6 a \left (a^2+5 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {8 a^2 b \sin (c+d x)}{d \sqrt {\sec (c+d x)}}\right )+\frac {2 a^2 \sin (c+d x) (a+b \sec (c+d x))}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )\)

input
Int[Cos[c + d*x]^(5/2)*(a + b*Sec[c + d*x])^3,x]
 
output
Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*a^2*(a + b*Sec[c + d*x])*Sin[c + 
 d*x])/(5*d*Sec[c + d*x]^(3/2)) + ((6*a*(a^2 + 5*b^2)*Sqrt[Cos[c + d*x]]*E 
llipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (10*b*(a^2 + b^2)*Sqrt[Co 
s[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (8*a^2*b*Sin 
[c + d*x])/(d*Sqrt[Sec[c + d*x]]))/5)
 

3.9.12.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4328
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[a^2*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)* 
((d*Csc[e + f*x])^n/(f*n)), x] - Simp[1/(d*n)   Int[(a + b*Csc[e + f*x])^(m 
 - 3)*(d*Csc[e + f*x])^(n + 1)*Simp[a^2*b*(m - 2*n - 2) - a*(3*b^2*n + a^2* 
(n + 1))*Csc[e + f*x] - b*(b^2*n + a^2*(m + n - 1))*Csc[e + f*x]^2, x], x], 
 x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 2] && ((Int 
egerQ[m] && LtQ[n, -1]) || (IntegersQ[m + 1/2, 2*n] && LeQ[n, -1]))
 

rule 4533
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) 
+ (A_)), x_Symbol] :> Simp[A*Cot[e + f*x]*((b*Csc[e + f*x])^m/(f*m)), x] + 
Simp[(C*m + A*(m + 1))/(b^2*m)   Int[(b*Csc[e + f*x])^(m + 2), x], x] /; Fr 
eeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]
 

rule 4535
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]* 
(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.)), x_Symbol] :> Simp[B/b   Int[(b*Cs 
c[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x]^2) 
, x] /; FreeQ[{b, e, f, A, B, C, m}, x]
 

rule 4752
Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Csc[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
3.9.12.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(411\) vs. \(2(158)=316\).

Time = 169.41 (sec) , antiderivative size = 412, normalized size of antiderivative = 3.55

method result size
default \(-\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-8 a^{3} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+8 a^{3} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+20 a^{2} \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) b -2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a^{3}-10 a^{2} \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) b +5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, a^{2} b +5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, b^{3}-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, a^{3}-15 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, a \,b^{2}\right )}{5 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(412\)

input
int(cos(d*x+c)^(5/2)*(a+b*sec(d*x+c))^3,x,method=_RETURNVERBOSE)
 
output
-2/5*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-8*a^3*cos(1 
/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6+8*a^3*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/ 
2*c)^4+20*a^2*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)*b-2*cos(1/2*d*x+1/2* 
c)*sin(1/2*d*x+1/2*c)^2*a^3-10*a^2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c) 
*b+5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(2 
*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*a^2*b+5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*Ellipt 
icF(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*b^3-3*(si 
n(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2 
*d*x+1/2*c)^2-1)^(1/2)*a^3-15*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1 
/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*a*b^2)/(-2*sin(1/2 
*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d* 
x+1/2*c)^2-1)^(1/2)/d
 
3.9.12.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 185, normalized size of antiderivative = 1.59 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))^3 \, dx=\frac {2 \, {\left (a^{3} \cos \left (d x + c\right ) + 5 \, a^{2} b\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 5 \, \sqrt {2} {\left (i \, a^{2} b + i \, b^{3}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 \, \sqrt {2} {\left (-i \, a^{2} b - i \, b^{3}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, \sqrt {2} {\left (-i \, a^{3} - 5 i \, a b^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, \sqrt {2} {\left (i \, a^{3} + 5 i \, a b^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{5 \, d} \]

input
integrate(cos(d*x+c)^(5/2)*(a+b*sec(d*x+c))^3,x, algorithm="fricas")
 
output
1/5*(2*(a^3*cos(d*x + c) + 5*a^2*b)*sqrt(cos(d*x + c))*sin(d*x + c) - 5*sq 
rt(2)*(I*a^2*b + I*b^3)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d* 
x + c)) - 5*sqrt(2)*(-I*a^2*b - I*b^3)*weierstrassPInverse(-4, 0, cos(d*x 
+ c) - I*sin(d*x + c)) - 3*sqrt(2)*(-I*a^3 - 5*I*a*b^2)*weierstrassZeta(-4 
, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*sqrt(2 
)*(I*a^3 + 5*I*a*b^2)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, co 
s(d*x + c) - I*sin(d*x + c))))/d
 
3.9.12.6 Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))^3 \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)**(5/2)*(a+b*sec(d*x+c))**3,x)
 
output
Timed out
 
3.9.12.7 Maxima [F]

\[ \int \cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))^3 \, dx=\int { {\left (b \sec \left (d x + c\right ) + a\right )}^{3} \cos \left (d x + c\right )^{\frac {5}{2}} \,d x } \]

input
integrate(cos(d*x+c)^(5/2)*(a+b*sec(d*x+c))^3,x, algorithm="maxima")
 
output
integrate((b*sec(d*x + c) + a)^3*cos(d*x + c)^(5/2), x)
 
3.9.12.8 Giac [F]

\[ \int \cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))^3 \, dx=\int { {\left (b \sec \left (d x + c\right ) + a\right )}^{3} \cos \left (d x + c\right )^{\frac {5}{2}} \,d x } \]

input
integrate(cos(d*x+c)^(5/2)*(a+b*sec(d*x+c))^3,x, algorithm="giac")
 
output
integrate((b*sec(d*x + c) + a)^3*cos(d*x + c)^(5/2), x)
 
3.9.12.9 Mupad [B] (verification not implemented)

Time = 14.04 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.08 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))^3 \, dx=\frac {2\,b^3\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {6\,a\,b^2\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,a^2\,b\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,a^2\,b\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{d}-\frac {2\,a^3\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

input
int(cos(c + d*x)^(5/2)*(a + b/cos(c + d*x))^3,x)
 
output
(2*b^3*ellipticF(c/2 + (d*x)/2, 2))/d + (6*a*b^2*ellipticE(c/2 + (d*x)/2, 
2))/d + (2*a^2*b*ellipticF(c/2 + (d*x)/2, 2))/d + (2*a^2*b*cos(c + d*x)^(1 
/2)*sin(c + d*x))/d - (2*a^3*cos(c + d*x)^(7/2)*sin(c + d*x)*hypergeom([1/ 
2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2))